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Chapter 1

Introduction

We have compiled a set of compartmental deterministic models for transmissible diseases,
ready for use in the COPASI Biochemical System Simulator software (and other SBML
standard compliant tools). Models were chosen to represent globally relevant diseases, as
well as a diversity of disease types and infection mechanisms. These models aim to exemplify
commonly used mathematical analyses, as well as numerical simulations, using COPASI.
A primary goal is to provide inexperienced users an amenable introduction to the basics
of mathematical modeling of infectious diseases. Provided examples show how one can
formulate and numerically explore and analyze a mathematical models. We also aim to
promote consistency between modeling efforts by making it easier to use existing standards.
This should save people time and effort by enabling them to build from pre-existing models,
as well as foster collaboration and reproduceability.

In the sections to follow, we will study basic mathematical models for selected diseases.
Chapters 2 through 5 consider diseases by mechanism of infection: water-borne diseases,
sexually-transmitted diseases, airborne diseases and vector-borne diseases. Each of these
chapters considers each disease case in terms of its epidemiology, a model extracted from
literature, a short mathematical analysis, and the COPASI-related code. The following
points will be addressed, as relevant for each disease case. These will ultimately relate to
specifics in the COPASI model structure and simulation settings.

1. Infection mechanism (E.g. seasonality)

2. Transmission agents (human, vector, animal host, animal reservoir, environment like
water bodies, soil, etc.)

3. Mixing structure (homogeneous, age-structured, sex-structured, spatial metapopula-
tion)

4. Region

5. Interventions (Vaccination, social distancing, preventative and curative treatment)

6. Initial conditions (based on the research question) and temporal changes in the inter-
ventions (e.g. vaccination is one time phenomenon whereas social distancing may vary
over time)

5



6 CHAPTER 1. INTRODUCTION

The Generic Models chapter (6) covers slight modifications of the presented models.
Chapter (7), The Final Epidemic Size, looks at techniques used to compute the final epidemic
size of various models.

The COPASI files for the following models and reproduced results from the respective ref-
erenced papers and can be found at https://github.com/mugdhat2/CopasiDiseaseLibrary.

https://github.com/mugdhat2/CopasiDiseaseLibrary


Chapter 2

Water-borne Diseases

2.1 Cholera

Introduction

Cholera is an acute, diarrheal illness caused by infection of the intestine with the toxigenic
bacterium Vibrio cholerae. It is estimated Cholera is responsible for 2.9 million cases and
95,000 deaths annually worldwide. The infection is often mild or without symptoms, but
can be severe. Approximately 1 in 10 people who get sick with cholera will develop severe
symptoms such as watery diarrhea, vomiting, and leg cramps. In these people, rapid loss
of body fluids leads to dehydration and shock. Without treatment, death can occur within
hours.

A person can get cholera by drinking water or eating food contaminated with cholera
bacteria. In an epidemic, the source of the contamination is usually the feces of an infected
person that contaminates water or food.

Mathematical Model

Assume the health stages Susceptible (S), Infected (I) and Recovered (R), and let B denote
the concentration of vibrios in contaminated water. The following [18], two transmission
paths for Cholera are considered: environment-to-human transmission and human-to-human
transmission.

Susceptible individuals are assumed to be recruited proportionally to the population
size, µN , and can become infected by drinking contaminated water at rate βe

B
k+B , or by

contact with infected individuals at rate βhI. In addition, susceptible individuals might get
vaccinated and become permanently immune at rate ν, or die at rate µ. Infected individuals
are assumed to permanently recover on average after 1

γ days or die at rate µ. Contaminated
water is assumed to be generated by infected individuals at rate ξ, and it cleans up by
natural vibrios decayment at rate δ or by disinfection at rate c.

The aforementioned disease dynamics are captured in the following system of Ordinary

7



8 CHAPTER 2. WATER-BORNE DISEASES

Figure 2.1: Flowchart of Cholera disease model

Differential Equations (ODE).
dS
dt = µN −

(
βeS

B
k+B + βhSI

)
− µS − vS

dI
dt = βeS

B
k+B + βhSI − (γ + µ)I

dR
dt = γI − µR+ vS
dB
dt = ξI − δB − cB

(2.1)

where µ represents natural birth or death rate, N(S + I + R = N) denotes the total
population in China, k corresponds to the concentration of vibrios in contaminated water,
ξ is the rate of human contribution to vibrio Cholera, δ is the decay rate of vibrios

With estimated parameters βe = a× 10−6, βh = b× 10−9 and ν.

Model Analysis

The presented mathematical model incorporates population dynamics that allow the model
to reach an endemic level (non-zero steady state) in the population. In the absence of
cholera, model (2.1), assumes a constant total population since

dN

dt
=
dS

dt
+
dI

dt
+
dR

dt
= 0

Therefore, it is enough to consider the following equations

dS

dt
= µN − βeS

B

k +B
− βhSI − µS − vS

dI

dt
= βeS

B

k +B
+ βhSI − (γ + µ)I

dB

dt
= ξI − δB − cB

(2.2)

Making system (2.2) equal to zero, and solving for the population variables, we get the
disease-free equilibrium (DFE) under control policies (vaccination)

E0 =

(
µN

µ+ v
, 0, 0

)
(2.3)
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and the following endemic equilibrium

E∗ = (S∗, I∗, B∗) , where I∗ =
(δ + c)B∗

ξ
and S∗ =

µNξ − (γ + µ)(δ + c)B∗

(µ+ v)ξ

Following the Next Generation Matrix (NGM) approach with infectious compartments I
and B, the control reproductive number of system (2.1) is given by

RC = Rh +Re = βh
µN

(µ+ v)(γ + µ)
+ βe

µNξ

(µ+ v)(γ + µ)(δ + c)k
(2.4)

which collects the secondary infections produced by infected individuals during its infectious
period 1

γ+µ at rate βh and, the secondary infections produced by contaminated water at

rate βe
ξ
κ during its contamination period 1

δ+c , generated by infected individuals during their

infectious period 1
γ+µ , in a partially susceptible population S0 = µN

µ+ν .
Notice that the control reproductive number RC , reduces to the basic reproductive

number R0, in the absence of vaccination. In this case, S0 = N and the basic reproductive
number is given by

R0 = N

(
βh

1

(γ + µ)
+ βe

ξ

(γ + µ)(δ + c)k

)
(2.5)

Simulations

To simulate the model we use the parameters in Figure 2.2.

Figure 2.2: Parameters for Cholera model

Model Remarks

The studied cholera model incorporates several key components: (i) due to the endemic na-
ture of cholera in the affected regions, a model with demographic processes is used; (ii) the
water and human based cholera transmission routes require addressing both infection forces
in order to appropriately capture disease dynamics and thresholds; (iii) the availability of
vaccine makes it important to study cholera dynamics in the absence and in the presence of
control measures (vaccination): (a) cholera dynamics in a completely susceptible population
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Disease Cholera

Transmission pathway(s)
- Human-to-human
- Water-to-human

Intervention Scenarios
- No Intervention
- Disinfection of water (at rate c)
- Vaccination (at rate ν)

Model source [18]

Unique modeling aspect Simple model with
- environmental transmission mode
- vaccination

Location China
Initial conditions I0 = 28; B0 = 500 (Assumed∗)

Parameter estimate remarks
- Sources of parameter estimates not given
- For R0 < 1, Figure 5 shows positive equilibrium
- Same data used to fit and validate the model

Data Sources NA
Reproducibility remarks Figures 5 and 6 reproduced

Possible extensions
- Waning immunity upon recovery and vaccination
- Finer spatial resolution

Table 2.1: Cholera: Summary and reproducibility attributes. ∗ Information missing in paper

and, (b) cholera dynamics in a partially susceptible population, for which disease dynam-
ics exhibit, the basic reproductive number and the control reproductive number (disease
eradication via control measures), R0 and RC respectively.

Finally, notice that RC and R0 of model (2.1), are directly proportional to the popu-
lation size. This is due to the mass action formulation βSI, as opposed to the standard
incidence formulation βS I

N . The fact that the basic and the control reproduction numbers
are functions of the population size, has direct implications to public health policies.

2.2 Typhoid

Introduction

Mathematical model

Following the work in [16], we assume the population under study is subdivided in the
following health classes: Susceptible individuals (S), Infected and infectious individuals (I),
Infected and not infectious individuals due to treatment (T ), and Recovered individuals (R).
The model also assumes that some susceptible individuals are vaccinated and loss immunity
after a period of time (P ).



2.2. TYPHOID 11

Figure 2.3: Flowchart of Typhoid disease model

The proposed model assumes that susceptible individuals are being recruited at a con-
stant rate Λ and die at a per-capita rate µ.

The fraction σ of recruited susceptible individuals are assumed to be vaccinated, be-
coming temporary protected against Typhoid on average for a period of 1

γ . The fraction of
non-vaccinated recruited individuals 1− σ becomes susceptible. Typhoid is transmitted by
contacts between infected and susceptible individuals at a rate αSI. Infected individuals
either, undergo disease-induced death at a rate δI, go to treatment at a rate βI, or die by
other reasons at a per-capita rate µ. Individuals under treatment recover at a per-capita
rate ϵ, loosing natural immunity at a per-capita rate κ, or die out by other reasons at a
per-capita rate µ.

dP
dt = σΛ− (γ + µ)P
dS
dt = (1− σ)Λ + γP − αSI − µS + kR
dI
dt = αSI − (δ + β + µ)I
dT
dt = βI − (µ+ ε)T
dR
dt = εT − µR− kR

(2.6)

Model Analysis

Simulations

Assumptions:

� I (Infectious individuals) in the coded model is equivalent to Ie (educated infectious
individuals) in [1] since the models closely resemble.

� (P0, S0, I0, T0, R0) = (100, 200, 120, 80, 60) based on Figures in [1]

� Parameter estimation from [1] as shown in Table 2.2

Model remarks

The proposed model assumes a mass action law in the non-linear term (αSI), which as-
sumes that every susceptible individual makes contacts with every infected individual. This



12 CHAPTER 2. WATER-BORNE DISEASES

Parameter Definition Assumption from [1] Value
α Infection transmission coefficient β2 0.05
β Treatment initiation rate ϕ2 0.3
δ Disease induced mortality rate δ 0.075
ϵ Recovery rate ϵ 0.4
γ Rate of waning immunity of protected individuals ω 0.5
k Immunity waning rate of recovered individuals 0 0
Λ Total recruitment rate of individuals Λ 200
µ Natural mortality rate µ 0.142
σ Vaccination proportion τ/Λ 0.092

Table 2.2: Parameter estimates adapted from [1]. Time units in decades.

Disease Typhoid
Transmission pathway(s) Human-to-human

Intervention Scenarios
- No Intervention
- Treatment
- Vaccination

Model source [16]

Unique modeling aspect

- Capturing water-borne transmission without an explicit class for
contaminated water
- Waning immunity of vaccination captured
- Individuals in treatment are not infectious

Location Non-specific
Initial conditions Assumed based on Figures in [1]
Parameter estimate remarks Assumed based on estimates in [1]
Data Sources NA
Reproducibility remarks Simulations approximate Figures 2, 3, 5, 6 and 7 in [1]
Possible extensions Transmission pathway through contaminated food and water

Table 2.3: Typhoid: Summary and reproducibility attributes
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assumption may be appropriate in the case of small populations, but inaccurate as the to-
tal population size increases. A direct consequence of the mass-action assumption is that
the basic reproductive number is proportional to the population size. In other words, the
model assumes that the number of secondary cases produced by a single infected individual
increases as the population size increases.

2.3 Dysentery

Introduction

Dysentery can result from bacteria, virus or parasitic infection. It is commonly caused
by shigella dysenteriae serotype 1 (bacillary dysentery) or Entamoeba histolytica (amoebic
dysentery). Without adequate hydration, it can be fatal.

Although preventable and treatable, it is common worldwide. Dysentery epidemics regu-
larly occur in less developed areas of Central and South America, Africa, and Asia. It tends
to be a major problem among refugee populations, where overcrowding and poor sanitation
facilitate transmission.

Mathematical model

Based on the work by Weldegiorgis et.al. [4], the population of interest is subdivided into
Susceptible (S), Infected (I) and Recovered (R) individuals. The infectious pathogen is
denoted by B.

Figure 2.4: Flowchart of Dysentery disease model

The proposed model assumes susceptible individuals are recruited at a constant rate
Λ, and assumes individuals die out at the per-capita rate µ, regardless of their health
status. Susceptible individuals are assumed to become infected by contact with infectious

individuals
(
λh = βh

I
N

)
or by ingesting the infectious pathogen

(
λB = βB

B
K+B

)
, where

βB represents the rate of ingesting the pathogen from the contaminated environment, and
βh through human to human interaction. The infection due to virus ingestion is assumed
to follow a logistic shape, where the 50% chance of acquiring the infection is denoted by
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K. Infected individuals recover at a per-capita rate γ or die from natural causes or by
disease-induced deaths at a per-capita rate d. Recovered individuals die out or are assumed
temporarily immune, before becoming susceptible again at a rate α. The infectious pathogen
is assumed to be shed by infectious individuals at a rate ϵI, and it is assumed the pathogen
clears at a rate σ.

The dynamics of disease progression among individuals in the affected population is
described by the following system of ODE’s

dS
dt = Λ+ αR− (λh + λB + µ)S
dI
dt = (λh + λB)S − (µ+ γ + d)I
dR
dt = γI − (µ+ α)R
dB
dt = ϵI − σB

(2.7)

where

λh = βh
I

N
and λB = βB

B

K +B
(2.8)

Model analysis

Notice that the population is not constant and therefore we start computing the population’s
steady state. The population size is governed by the equation dN

dt = Λ− µN , with a steady

state N∗ = Λ
µ . Therefore the disease-free equilibrium is given by

E∗ =

(
Λ

µ
, 0, 0

)
. (2.9)

Using the next generation approach with the infectious compartments I and B, we get
the basic reproductive number

R0 =
βh

(µ+ γ + d)
+

ΛβBϵ

µ(µ+ γ + d)Kσ
(2.10)

which accounts for the average number of secondary infections produced by a single infected

individual
(

βh

µ+γ+d

)
, and the average infections produced by the infected environment.

Simulations

Model remarks

Notice that the birth rate is constant, instead of proportional to the population size. This
makes the population size not constant and therefore the analysis requires computation of
the population steady state. Alternatively, we could assume the population already reached
steady state by using a recruitment rate proportional to the population size (ΛN).

The saturation assumption made in the infectious function of environmental infection
makes the model highly sensitive to changes in the K parameter. Notice that λB grows
linearly with B if B ≪ K, while if B ≫ K, λB approaches a steady state, with βB resulting
in a saturation state. This impacts the early dynamics of I(t) and B(t).
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Disease Dysentery

Transmission pathway(s)
- Human-to-human
- Water-to-human

Intervention Scenarios - No Intervention

Model source [4]
Unique modeling aspect Waning immunity of recovered people
Location Ethiopia

Initial conditions
- Values used from Table 3 in [4]
- I0 differs in Table 3 and Figure 4 in [4]

Parameter estimate remarks Time course for given parameters does not fit the data
Data Sources Table 2 in [4]
Reproducibility remarks Figure 4 in [4] reproducible for K = 28158, α = 0.14, γ = 0.124
Possible extensions Age-structure model since children are at most risk

Table 2.4: Dysentery: Summary and Reproducibility attributes

Figure 2.5: Model fitting to reproduce Figure 4 in [4] using COPASI. Horizontal axis is time
in weeks.
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Chapter 3

Sexually-transmitted Diseases

3.1 Herpes simplex virus (HSV–2)

Introduction

Herpes simplex virus (HSV) is an incurable disease that persists during the lifetime of the
human host and produces mucocutaneous infections. There are two types of HSV (HSV-1
and HSV-2). HSV-2 infection in a healthy and non-infected person occurs through sexual
contact and direct contact with bodily fluids with an infected person.

Genital herpes infection is common in the United States. The Centers for Disease Control
(CDC) estimates that 776,000 people in the United States get new genital herpes infections,
annually. Nationwide, 11.9% of persons aged 14 to 49 years have HSV- 2 infection.

Mathematical model

The following model [2] is used to study the effects of early treatment of HSV-2 on its
transmission dynamics and control. It considers the U.S. sexually active population with
ages between 15 and 49 years.

17
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Figure 3.1: Flowchart of HSV-2 disease model

The model considers susceptible individuals (S), individuals in early treatment (X),
infected infectious individuals (I), infected individuals under treatment (T ), and infected but
not infectious individuals in a latent state (L). Susceptible individuals showing symptoms
similar to HSV-2 infection can be sent to early treatment X even if they are not HSV-2
infected, at rate κη. Notice that also false positives may be sent to the X class. After
a treatment period, individuals in X come back to S at rate ϕ. Susceptible individuals
get infected and progress to I by contacting infectious individuals not in treatment. An
infectious individual may go to a Latency state L at rate γ, may go to treatment at rate
η, or may die out at rate µ. Individuals under treatment progress to a dormant state L at
rate ϕ or dies out at rate µ. Individuals in the latency state may develop symptoms and go
to I at rate r or die out at rate µ.

dS

dt
= µN + ϕX − βSI

N
− (µ+ κη)S

dX

dt
= κηS − (ϕ+ µ)X

dI

dt
=
βSI

N
+ rL− (η + γ + µ)I

dT

dt
= ηI − (ϕ+ µ)T

dL

dt
= γI + ϕT − (r + µ)L

Model Analysis

Using the Next Generation Matrix (NGM) to derive the control reproductive number and
the basic reproduction number R0, we define the infectious compartments {I, T, L}. Since
the total population is at steady state Ṅ = 0, the Disease-Free Equilibrium (DFE) in the
presence of treatment is given by(

N(µ+ ϕ)

κη + µ+ ϕ
,

Nκη

κη + µ+ ϕ
, 0, 0, 0

)
.
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We define F =

 βSI
N
0
0

 and V =

 (η + γ + µ)I − rL
(ϕ+ µ)T − ηI

(µ+ r)L− γI − ϕT

.
The Jacobian matrices for F and V with respect to I, T and L evaluated at the DFE

are respectively the following:

F =

 β 0 0
0 0 0
0 0 0

 and V =

 γ + η + µ 0 −r
−η ϕ+ µ 0
−γ −ϕ µ+ r

. The spectral radius of the

NGM, FV −1 is then

RC =

β
µ+η+γ · µ+ϕ

ηκ+µ+ϕ

1−
(

γ
η+µ+γ · r

µ+r + ϕ
µ+ϕ · η

η+µ+γ · r
µ+r

) (3.1)

Notice that RC corresponds to the control reproductive number. The basic reproductive
number is obtained by setting the control parameters ϕ, η to zero. Therefore

R0 =

β
µ+γ

1− γ
µ+γ · r

µ+r

. (3.2)

Model remarks

In the proposed model, infected individuals never recovers from the disease. Infectious
individuals (I), may progress to a treatment state (T ), and then progress to a latent state
(L), from which it is possible to come back to the infectious state. Therefore, a single
individual may be in the infectious compartment I many times during his/her lifespan,
producing secondary infections during each visit to the I stage. The basic reproductive
number takes into account that

R0 =

β
µ+γ

1− γ
µ+γ · r

µ+r

=

∞∑
n=0

(
β

µ+ γ

)(
γ

µ+ γ
· r

µ+ r

)n

. (3.3)
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Chapter 4

Airborne diseases

4.1 COVID-19

Grenfell’s SIRS model [3].

Introduction

Figure 4.1: Flowchart of COVID-19 disease model

21
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4.2 COVID-19 in the Mexican context

4.2.1 Introduction

4.2.2 Model

The model in [17] study SARS-CoV-2 transmission in the Mexican context.

dS

dt
= µS − (kv + keU + kiI)S (4.1)

dU

dt
= (kv + keU + kiI)S − αU (4.2)

dI

dt
= αU − (γr + δd+ ϵa)I (4.3)

dA

dt
= ϵaI − [δp+ γ(1− p)]A (4.4)

dR

dt
= γrI + γ(1− p)A (4.5)

dD

dt
= δdI + δpA (4.6)

4.3 Tuberculosis

Introduction

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tuberculosis with at least
one-third of the world human population as its reservoir. TB remains the world’s deadliest
infectious killer. 1.4 million people died from TB in 2019.

Following primary tuberculosis (TB) infection, only approximately 10% of individuals
develop active TB. Most people are assumed to mount an effective immune response to
the initial infection that limits proliferation of the bacilli and leads to long-lasting partial
immunity both to further infection and to reactivation of latent bacilli remaining from the
original infection. Infected individuals may develop active TB as a consequence of exogenous
reinfection, i.e., acquiring a new infection from another infectious individual.

Mathematical Model

The model proposed in [10] stratifies the population under study in Susceptible (S), Exposed
(E), Infected (I) and individuals under treatment (T ). Due to the worldwide endemic
situation of TB, the model incorporates demography processes by assuming a constant
recruitment of susceptible individuals (Λ) and average lifespan 1

µ .

Susceptible individuals become exposed by direct contacts with infected people at rate
βcS I

N . Exposed individuals are assumed to become infectious by contacts with infected

individuals at rate pβc I
N or, by endogenous progression at rate κ, otherwise exposed in-

dividuals die out at rate µ. Infectious individuals die out at rate µ, receive treatment at
rate r or die out at rate d. Finally, individuals under treatment either become infectious
again by contact with infected individuals at rate σβc I

N or die out at rate µ. p represents
the level of reinfection, c is the per-capita contact rate, and ≤ σ ≤ 1 stands for a reduced
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Figure 4.2: Flowchart of Tuberculosis disease model

infectiousness.
d
dtS = Λ− βcS I

N − µS
d
dtE = βcS I

N − pβcE I
N − (µ+ k)E + σβcT I

N
d
dtI = pβcE I

N + kE − (µ+ r + d)I
d
dtT = rI − σβcT I

N − µT

(4.7)

where µ = 0.016y−1, d = 0.1, p = 0.4, σ = 0.9,Λ = 417(Λ/µ = 25000), k = 0.005, r = 2.
The value of β is calculated to be 7.465y−1 for R0 = 0.87 using the expression for the basic
reproduction number shown in Equation 4.9. Assuming c = 1, the system will show endemic
equilibrium even for R0 < 1 for the values of p > 0.3133. Refer to Feng et. al. (2000) for
the detailed analysis [10].

Model Analysis

In the absence of TB, the total population in model (4.7) is not constant, but it converges
to a steady state

dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dT

dt
= Λ− µN (4.8)

solving (4.8), we get that N(t) → Λ/µ. Using the next generation matrix, we can compute
the basic reproductive number

R0 =

(
βc

µ+ r + d

)(
k

µ+ k

)
, (4.9)

the expression (4.9) collects the secondary infections produced by the proportion of ex-
posed individuals k

µ+k , who become infectious and infects at a rate βc during their average

infectious period 1
µ+r+d .

Notice that the basic reproductive number only captures the first time an individual is
infected (S → E) and not necessarily becomes infectious (E → I). Moreover, R0 does not
depend on p.

However, the endogenous infection (κE) and treatment relapse (σβcT I
N ) are not cap-

tured in R0. This generates a backward bifurcation. The key components of this type of
dynamics are the processes associated to the relapse of individuals in latency state: endoge-
nous progression κ, progression to treatment r and, progression to latency σ.

Model Remarks

The presented model studies the implication of exogenous and endogenous reinfection in
the context of TB. The results suggest that these disease dynamics support an endemic
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equilibrium even when the classic metric R0 is less than one. This makes TB eradication
more challenging because, while takingR0 < 1 is still necessary, it is not enough to guarantee
a disease-free state. In this case, the system exhibits sensitivity to initial conditions if
Rp < R0 < 1, where Rp is a second threshold below which a disease-free state is guaranteed.

4.4 Ebola virus disease

Introduction

Ebola virus disease (EVD) is transmitted to people from wild animals (such as fruit bats,
porcupines and non-human primates) and then spreads in the human population through
direct contact with the blood, secretions, organs or other bodily fluids of infected people, and
with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids. The
average EVD case fatality rate is around 50%. Case fatality rates have varied from 25% to
90% in past outbreaks. There is no proven treatment for Ebola but simple interventions
early on can significantly improve chances of survival. The 2014–2016 outbreak in West
Africa was the largest and most complex Ebola outbreak since the virus was first discovered
in 1976. Around 30,000 infected cases and 11,000 deaths were reported during this outbreak.

Mathematical model

In [9], the authors analyze the EVD dynamics in the absence of control measures. The
mathematical model structures the population of interest by individuals’ health states: sus-
ceptible (S), exposed and possibly infectious individuals (E), symptomatic infectious and
undiagnosed individuals (I) , disease-induced deaths (D) and recovered (R) individuals,
N = S + E + I +D +R.

Figure 4.3: Flowchart of Ebola disease model

Susceptible individuals move to the infected compartment at rate β
(
I+εD
N

)
through “ef-

fective” contacts with either infected individuals (I) or EVD-infected corpses (D). Infected
individuals spend on average 1

κ days on latency state, without being infectious. After the
latency period, individuals become infectious (I) on average during 1

γ days, after which, in-

dividuals either recover with probability (1− fd) or die with probability fd. EVD-infected
corpses (D) subpopulation is assumed to increase at rate fdγ, and reduced through properly
burial on average after 1

v days. EVD-infected corpses are assumed to be more infectious
than infected individuals due to have the highest viral load, ϵ > 1.



4.4. EBOLA VIRUS DISEASE 25


Ṡ = −βS

(
I+εD
N

)
Ė = βS

(
I+εD
N

)
− κE

İ = κE − γI

Ḋ = fdγI − νD

Ṙ = (1− fd) γI + νD

(4.10)

Figure 4.4: Parameters for Ebola model

Model analysis

Model (4.10) address a single EVD outbreak where the total population remain constant
(Ṅ = Ṡ + Ė + İ + Ḋ + Ṙ=0). By using the next generation approach, with disease com-
partments E, I,D; the associated basic reproductive number is

R0 = β

(
1

γ
+
εfd
v

)
. (4.11)

The basic reproductive number of system (4.10) captures the average number of secondary

infections produced by a typical infectious individual during their infectious period
(

β
γ

)
, and

the secondary cases generated by a single EVD-infected corpse, during its disposal period(
εβfd
v

)
, in a totally susceptible population.

Model remarks

The 2014 West African Ebola outbreak was a very challenging epidemic in great part due
to the limitation of local public health infrastructure. In order to address these challenges,
the model (4.10) incorporates two transmission routes: via infected individuals and via
infected corpses. The model suggest that, while the main route of infection are the infected
individuals, fast removal of infected corpses have a high impact on reducing R0 < 1 and
thus in controlling an EVD outbreak. Since births and deaths are not modeled here, users
should run the time course for short time periods for more realistic results. The model can
be extended to include control measures.
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4.5 Measles

Introduction

Mathematical model

In [19], the author considered a population composed by Susceptible individuals S(t), Ex-
posed individuals, but not yet infectious E(t), Infectious individuals I(t), and Recovered
or removed artificially trough vaccination and permanently immune individuals R(t). The
previously described disease dynamics are represented in the Figure 4.5

Figure 4.5: Flowchart of Measles disease model

and formalized by the set of ODE’s (4.12)

dS

dt
= b(1− p)N − βSI

N
− µS

dE

dt
=
βSI

N
− (σ + µ)E

dI

dt
= σE − (γ + µ+ δ)I

dR

dt
= bpN + γI − µR

(4.12)

Model analysis

Model remarks

4.6 Influenza

Introduction

Imperfect control measures to mitigate disease transmission are known to be mechanisms
that may induce backward bifurcation [11]. For example, imperfect quarantine or vaccines
granting partial immunity for significantly short term periods. In this section we use the
work in [8] to show how imperfect quarantine is modeled and some of its basic implications.

Mathematical model

Consider the following model for Influenza and quarantine where S, I,Q and R correspond
to the number of susceptible, infected, quarantine and recovered individuals, with S + I +
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Q+R = N . In this model

Ṡ = µN − βS
I

N −Q
− µS,

İ = βS
I

N −Q
− (θ + γ + µ)I,

Q̇ = θI − (α+ µ)Q,

Ṙ = γI + αQ− µR.

(4.13)

In this model, a policy of perfect quarantine is considered. This impact the incidence term in
the form βSI/(N −Q) where β is the per-capita effective contact rate. The model assumes
constant recovery (γ) and quarantine (θ) per-capita rates. µ is the per-capita birth and
death rate, and α is the per-capita recovery rate for isolated/quarantined individuals.

The aforementioned model assumes quarantine is perfect, and quarantined individuals
cannot produce secondary infections during their quarantine period. However, in reality
this usually is not true and we may expect certain leaking rate so that some quarantined
individuals may infect others in the population. The following model incorporates infections
of individuals undergoing quarantine

dS

dt
= µN − βS

I

N − σQ
− β̂S

(1− σ)Q

N − σQ
− µS

dI

dt
= βS

I

N − σQ
+ β̂S

(1− σ)Q

N − σQ
− (θ + γ + µ)I

dQ

dt
= θI − (α+ µ)Q

dR

dt
= γI + αQ− µR

(4.14)

Model (4.14) incorporates imperfect quarantine for σ ∈ [0, 1]. σ = 0 stands for the scenario of
totally ineffective quarantine, while σ = 1 represents a totally perfect quarantine. Therefore,
the total number of successfully quarantined individuals is σQ and therefore the total number
of individuals who are available to mix homogeneously is (N − σQ). In model (4.14) β̂
represents the effective rate of contacts between susceptible and imperfectly quarantined
individuals. Then, the proportion of contacts made with an infected individual is I/(N −
σQ), while the proportion of contacts made with an imperfectly quarantined one is (1 −
σ)Q/(N − σQ). Therefore, the new force of infection is given by

λ = β
I

N − σQ
+ β̂

(1− σ)Q

N − σQ
(4.15)

where the new incidences due to contacts with infected individuals are βSI/(N − σQ), and

due to contacts of susceptible with imperfectly quarantined individuals β̂(1 − σ)SQ/(N −
σQ).



28 CHAPTER 4. AIRBORNE DISEASES

Model analysis

To analyze model (4.14) we normalize the model by assuming N = 1 and letting β̂ = rβ

dS̄

dt
= µ− βS̄

[Ī + r(1− σ)Q̄]

1− σQ̄
− µS̄

dĪ

dt
= βS̄

[Ī + r(1− σ)Q̄]

1− σQ̄
− (θ + γ + µ)Ī

dQ̄

dt
= θĪ − (α+ µ)Q̄

dR̄

dt
= γĪ + αQ̄− µR̄

(4.16)

where X̄ = X/N represents the proportion for the population in the health state X, so that
S̄ + Ī + Q̄+ R̄ = 1.

Stability of the DFE

By setting derivatives of the model (4.16) equal to zero, we get the system has the DFE
E0 = (1, 0, 0, 0) and an endemic equilibrium.

To explore stability of E0 we linearize the model around E0 that shows a Jacobian matrix
with two eigenvalues −µ and the eigenvalues of the submatrix

J0 =

(
β − (θ + γ + µ) (1− σ)rβ

θ −(α+ µ)

)
. (4.17)

Thus, local stability is given by the conditions

trace (J0) = β − (α+ µ)− (θ + γ + µ) < 0 (4.18)

det (J0) = (α+ µ)(γ + µ+ θ)− β(α+ µ)− (1− σ)rβθ > 0 (4.19)

Re-arranging det (J0) we get that in order for E0 to be stable the following condition should
hold

1 >
β

γ + µ+ θ

[
1 + (1− σ)

rθ

α+ µ

]
= R0. (4.20)

Therefore, E0 is stable whenever R0 < 1, and unstable whenever R0 > 1.
Furthermore, it is possible to show the model undergoes a Hopf bifurcation in the pa-

rameter space (σ,R0, θ).

Model remarks

The present model incorporates two key consequences of assuming quarantine or isolation
control measures: (i) the proportion of the population homogeneously mixing changes un-
der the assumption of quarantine/isolation, (ii) the imperfect implementation of quaran-
tine/isolation that may generate secondary cases.

4.7 Diphtheria

Introduction

The work in [13] studies the 2017 Diptheria outbreak in Indonesia, that affected 28 provinces
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Mathematical Model

Ṡ = A− (m− c)SI

N
− (c+ µ)S + γR (4.21)

Ė =
(m− c)SI

N
− (δ + µ)E (4.22)

İ = δE − (β + µ)I (4.23)

Ṙ = βI + cS − (γ + µ)R (4.24)

Model analysis

Model remarks
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Chapter 5

Vector-borne diseases

5.1 Zika

Introduction

Zika virus disease is caused by the bite of an infected Aedes species mosquito (Ae. aegypti
and Ae. albopictus). These mosquitoes bite during the day and night. Zika virus can be
transmitted through sexual intercourse, and it can be passed from a pregnant woman to her
fetus. Infection during pregnancy can cause microcephaly and other congenital malforma-
tions, known as congenital Zika syndrome. An increased risk of neurologic complications
is associated with Zika virus infection in adults and children, including Guillain-Barré syn-
drome, neuropathy and myelitis. There is no treatment available for Zika virus infection or
its associated diseases.

Mathematical model

In [5], authors take into account the human to human infection as well as the vector
(mosquito) to human transmission. The model subdivide the total human population,
NH(t), into susceptible humans SH(t), exposed human EH(t), infected humans IH(t), and
recovered humans RH(t), so that NH(t) = SH + EH + IH + RH . The entire mosquito
population, denoted by NV (t), is partitioned into susceptible vector SV (t), exposed vector
EV (t) and infected mosquito IV (t) and hence NV = SV +EV + IV . The proposed model is



d
dtSh = Λh − βhSh (IV + ρIh)− µhSh
d
dtEh = βhSh (IV + ρIh)− (µh + χh)Eh
d
dtIh = χhEh − (µh + γ + η) Ih
d
dtRh = γIh − µhRh

d
dtSV = ΛV − βV SV Ih − µV SV
d
dtEV = βV SV Ih − (µV + δV )EV
d
dtIV = δV EV − µV IV

(5.1)

31
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Figure 5.1: Flowchart of Zika disease model

Mathematical analysis

Notice the host population is not constant, so we start computing the host population steady
state

N ′
h = S′

h + E′
h + I ′h +R′

h = Λh − µhNh − ηhIh (5.2)

From equation(5.2) we can obtain that in the absence of infection Nh → Λh

µh
and, in the

presence of Zika infections

N ′
h + µhNh ≤ Λh.

The dynamics of vector population is described by N ′
v = Λv − µvNv which implies that

N ′
v = Λv

µv
.

The disease free equilibrium is given by E0 = {Nh, 0, 0, 0, Nv, 0, 0}, and following the
second-generation method

F =


0 ρβhΛh

µh
0 βhΛh

µh

0 0 0 0

0 βvΛv

µV
0 0

0 0 0 0

 , V =


k1 0 0 0
−χh k2 0 0
0 0 k3 0
0 0 −δV µV


where k1 = µh+χh, k2 = (µh + γ + η) and k3 = (µV + δV ). The basic reproductive number
of model (5.1) is then the spectral radius of the matrix FV −1

R0 =
ρβhΛhχh

2µhk1k2
+

√
ρ2β2

hΛ
2
hχ

2
h

4µ2
hk

2
1k

2
2

+
βhΛhχhβV δV ΛV

µhµ2
V k1k2k3

.

Further analysis can be done on the endemic equilibria and the backward bifurcation.
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Simulations

Figure 5.2: Parameters for Zika model

Note: Initial condition I0 different in reported best fit and in the plot in the paper [5].
Estimated µ = 0.000457; Figure 5 uses µ = 0.003199.

5.2 Malaria

Malaria is a life-threatening disease transmitted back and forth between by vectors and
hosts. It is caused by parasites transmitted to people through the bites of infected female
Anopheles mosquitoes.

Mathematical model

Under the assumption that there are no hosts or vectors disease induced deaths, the hosts
and mosquitoes populations remain constant, Nh and Nv respectively.

Figure 5.3: Flowchart of Malaria disease model

Following [6], a vector borne disease model for Malaria considers the interaction between
the host population and mosquitoes population. Moreover, given that infected mosquitoes
remain infected for life and do not recover, the proposed model assumes an SIR-like structure
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for both populations, but where mosquitoes never recover

S′
h = Λh − βhSh

Iv
Nv

− µhSh

I ′h = βhSh
Iv
Nv

− (µh + γh) Ih (5.3)

S′
v = Λv − βvSv

Ih
Nh

− µvSv

I ′v = βvSv
Ih
Nh

− µvIv

Model analysis

Notice that in model (5.3) the host population is not constant since

N ′
h = S′

h + I ′h = Λh − µhN
′
h. (5.4)

In order to explicitly find the equilibrium of the host population, we solve equation (5.4).
The total host population is then given by

N(t) = N(0)e−µt +
Λh

µh
.

By the theory of asymptotic systems, we can analyze system’s (5.3) qualitative behavior
by assuming the population involved already reached its steady state. Since N(t) → Λh

µh
,

we get that model’s (5.3) has a disease-free equilibrium (Nh, 0, Nv, 0), where Nh = Λh

µh
and

Nv = Λv

µv
.

Demographic processes in the hosts and mosquitoes population allow for an endemic
equilibrium under the following conditions

βhShIv = (γh + µh) IhNv

βvSvIh = µvIvNh

Λh = Sh

(
µh + βh

Iv
Nv

)
Nv (5.5)

Λv = Sv

(
µv + βv

Ih
Nh

)
Nh

By applying the second generation matrix to compute model’s (5.3) basic reproductive
number, we get

F =

[
0 βh

Nh

Nv

βv
Nv

Nh
0

]
, V =

[
γh + µh 0

0 µv

]
where the second generation matrix is

FV −1 =

 0
βh

Nh
Nv

µv

βv
Nv
Nh

γh+µh
0


and the basic reproductive number

R0 =

√
βhβv

µv (γh + µh)
. (5.6)
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Model remarks

Notice that following this approach, expression (5.6) envision human-human transmission
as a two step process: human-vector and vector-human transmission. However, it may be
more appropriate to consider both steps as a single process producing the next generation
of infected hosts. Under the former assumption, expression (5.6) becomes

R0 =
βhβv

µv (γh + µh)
(5.7)

Notice that in both cases, the epidemic threshold for disease eradication or disease persis-
tence is the same, R0 = 1.

5.3 Dengue model

Introduction

Dengue is caused by a virus of the Flaviviridae family, mainly transmitted by the Aedes
aegypti mosquito as the primary vector. There are four types of the virus causing dengue
fever (DENV-1, DENV-2, DENV-3 and DENV-4). While the number of dengue cases
reported to WHO increased over 8 fold over the last two decades, current estimates indicate
that 390 million dengue virus infections per year (95% credible interval 284–528 million), of
which 96 million (67–136 million) manifest clinically (with any severity of disease). Where
reported deaths between the year 2000 and 2015 increased from 960 to 4032, [15].

Mathematical model

By following the model formulation in [6], the proposed model assumes a recruitment rate
proportional to the population size for the host and vector populations. Moreover, the
vector population’s recruitment rate is assumed to be composed by newborn susceptible
mosquitoes (µv(Nv − qIv)), and newborn infected mosquitoes (qµvIv).

S′
h = µhNh − βhSh

Iv
Nv

− µhSh,

E′
h = βhSh

Iv
Nv

− (ηh + µh)Eh,

I ′h = ηhEh − (γ + µh) Ih,

Rh = γIh, (5.8)

S′
v = µv (Nv − qIv)− βvSv

Ih
Nh

− µvSv,

E′
v = βvSv

Ih
Nh

− (ηv + µv)Ev,

I ′v = qµvIv + ηvEv − µvIv.
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Model analysis

Following the second generation matrix with infectious compartments {Eh, Ih, Ev, Iv}, we
get a basic reproductive number of the form

R0 = βhβv
1

µh + γ

ηv
ηv + µv

ηh
ηh + µh

1

µv
+ qµv. (5.9)

Model remarks

The model assumes a period of latency where neither hosts and vectors are infections, the
dynamics of this model are similar to the SIR model where the latency period adds a delay
in infections. Furthermore, the model assumes vertical transmission among the infected
mosquitoes population (that is, infected mosquitoes produce infected newborns mosquitoes),
which in turn impact the basic reproductive number and the disease eradication threshold.

5.4 Leishmaniasis

Introduction

Mathematical model

The modeling work by ELmojtaba et. al. [7], assumes Leishmaniasis dynamics among three
independent populations: human hosts (NH), vectors (NV ) and reservoirs (NR). Beyond
the susceptible, infected and recovered health classes, the model assumes that humans after
the treatment of visceral leishmaniasis may develop post kala-azar dermal leishmaniasis
(PKDL).

The proposed model assumes two infection cycles: first, the infected reservoir population
infect susceptible vectors, and susceptible reservoirs are infected by infected vectors; second,
the infected vector population infect susceptible humans hosts, and infected human hosts
infect susceptible mosquitoes.
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Figure 5.4: Flowchart of Visceral Leishmaniasis disease model

S′
H = ΛH − abIV

SH

NH
− µhSH

I ′H = abIV
SH

NH
− (α1 + δ + µh) IH

P ′
H = (1− σ)α1IH − (α2 + β + µh)PH

R′
H = σα1IH + (α2 + β)PH − µhRH

S′
R = ΛR − abIV

SR

NR
+ µrSR

I ′R = abIV
SR

NR
− µrIR

S′
V = ΛV − acSV

IH
NH

− acSV
PH

NH
− acSV

IR
NR

SV − µvSV

I ′V = acSV
IH
NH

+ acSV
PH

NH
+ acSV

IR
NR

SV − µvIV

(5.10)

Mathematical analysis

The basic reproductive number of the proposed model is

R0 =

√
ac [µrabm (α2 + β + µh + (1− σ)α1) + abn (α1 + δ + µh) (α2 + β + µh)]

µrµv (α1 + δ + µh) (α2 + β + µh)
(5.11)
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Model remarks

The proposed model assumes a double infection cycle among three independent populations.
In consequence, disease eradication is not guaranteed by treating the human host population,
since the disease may persist for long periods among vectors and reservoirs.

5.5 Yellow fever

Introduction

Mathematical model

Based in the work by Zhao et. al. [20].

S′
h = −ab Iu

Nk
Sh − v (t− t0)

E′
h = ab

Ir
Nh

Sh − σhEh

A′
h = (1− δ)σhEh − γhAh

I ′h = δσhEh − γhIh

T ′
h = γhIh − κhTh

R′
h = v (t− t0) + γhAh + (1− θ)κhTh

D′
h = θκhTh

S′
v = Bv(t)− ac

ψdh + Ih
Nk

Sv − µvSv

E′
v = ac

ψAk + Ij
Nk

Sv − σvEv − µvEv

I ′v = σvEv − µvIv

(5.12)

Model analysis

The basic reproductive number of the model is

R0 =

√
[ψ · (1− δ) + δ] · a

2bcm

γh
· σv
µv (σv + µv)

(5.13)

Model remarks
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Generic Models

6.1 A two-strains model

From the book by Martcheva [14]. Consider an SIR model with genetic variability of a
non-fatal infectious pathogen. The population is divided into susceptible individuals S,
individuals infected by strain one I1, individuals infected by strain two I2, and recovered
individuals R(t). Assume recovered individuals get permanent cross-immunity after being
infected. In other words, after infected with a strain they can’t being infected with the same
or the other strain. In addition, assume differential infectiousness on the strains β1 and β2
as well as variable serial periods α1 and α2.

The previously described model of disease progression is given by

S′ = Λ− β1
SI1
N − β2

SI2
N − µS

I ′1 = β1
SI1
N − (µ+ α1) I1

I ′2 = β2
SI2
N − (µ+ α2) I2

R′ = α1I1 + α2I2 − µR

(6.1)

Adding model’s 6.1 equations, we get that the total population N is described by N ′(t) =
Λ−µN . Model 6.1 has three equilibria: a disease free-equilibrium given by E∗ = {Λ

µ , 0, 0, 0},
and two endemic equilibria where each of the strains dominates.

Notice that the strain-specific reproduction number are given by Rk = βk

µ+αk
. Opposite

to the single strain SIR model, the DFE E∗ is stable if both reproduction numbers are less
than one, and the DFE becomes unstable if at least one of the reproduction numbers is
greater than one.

The strain-specific dominance

By changing the model variables to proportions we get that s = S
N , ik = Ik

N , and since at
the steady state Λ = µN , we get that the equilibria are given by

0 = µ− β1si1 − β2si2 − µs
0 = β1si1 − (µ+ α1) i1
0 = β2si2 − (µ+ α2) i2
0 = α1i1 + α2i2 − µr

(6.2)

39
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The strain specific dominance is given by the absence of infected individuals of the other
strain. Assuming that strain 1 becomes dominant, we get I1 ̸= 0 and I2 = 0. Therefore, we
get that s = µ+α

β1
= 1

R1
. Notice that s is a proportion of the population, so that this holds

whenever R1 > 1.
From (6.2) we get

µ

s
= β1i1 + µ (6.3)

and

i1 =
µ

(µ+ α1)R1
=

µ

µ+ α1

(
1− 1

R1

)
r =

α1

µ
i1 =

α1

µ+ α1

(
1− 1

R1

)
.

(6.4)

Therefore the strain-one dominance equilibrium is given by

E1 =

(
1

R1

Λ

µ
,

µ

µ+ α1

(
1− 1

R1

)
Λ

µ
, 0,

α1

µ+ α1

(
1− 1

R1

)
Λ

µ

)
(6.5)

Similarly, the strain-two dominance equilibrium is given by

E2 =

(
1

R2

Λ

µ
, 0,

µ

µ+ α2

(
1− 1

R2

)
Λ

µ
,

α2

µ+ α2

(
1− 1

R2

)
Λ

µ

)
(6.6)

This model highlights the Competitive Exclusion Principle: When n strains com-
pete in a population, the strain with the largest reproduction number outcompetes the other
strains and drives them to extinction.

However, there are mechanisms that allow stable coexistence of multiple pathogens in
an epidemic model, namely mutation, coinfection, superinfection,

6.2 A model with linear likelihood of infection

From the book by Martcheva [14]. Assume a constant population composed by Susceptible
S, Infected I and Recovered R individuals. Assume also the transmission coefficient is linear
in the number of infected individuals 1 + νI where ν > 1, for instance, due to an increase
in the number of contacts or an increased probability of infection.

S′(t) = Λ− β(1 + vI)IS − µS

I ′(t) = β(1 + vI)IS − (α+ µ)I (6.7)

R′(t) = αI − µR

Adding model (6.7) equations, we get that the total populationN is described byN ′(t) =
S′(t) + I ′(t) + R′(t) = Λ − µN , which solution converges to the steady state N∗ = Λ

µ .

Therefore the disease free equilibrum always exists and it is given by E∗ = {Λ
µ , 0, 0}.

The endemic equilibria is obtained by solving

Λ− β(1 + vI)IS − µS = 0 (6.8)

β(1 + vI)IS − (α+ µ)I = 0 (6.9)

(6.10)
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from where we get that

(1 + vI)

[
Λ

µ
− µ+ α

µ
I

]
=
µ+ α

β
. (6.11)

Notice that expression (6.11) is a quadratic equation on I, which implies that under some
scenarios there may exists one or two endemic equilibria.

Consider the left-hand size of the expression (6.11), and denote it by f(I). The en-
demic equilibria of model (6.7) are given by the intersections of the parabola f(I) with the
horizontal line y = µ+α

β . Since f(I) attains its maximum at

Imax =
1

2v

(
Λv

µ+ α
− 1

)
(6.12)

then, there will be two endemic equilibria provided Imax > y = µ+α
β .

6.3 A model with disease induced-deaths and treatment

From: Mathematical epidemiology - F. Brauer

S′ = −βS[I + δT ] (6.13)

I ′ = βS[I + δT ]− (α+ γ)I (6.14)

T ′ = γI − ηT (6.15)

N ′ = −(1− f)αI − (1− fT ) ηT (6.16)

with basic reproductive number

R0 =
β

α+ γ
+

γ

α+ γ

δβ

η
(6.17)

6.4 A model with closed solutions

From: Mathematical epidemiology - F. Brauer
Assumes a disease sufficiently debilitates infected individuals so that only susceptible

individuals can reproduce. Let us consider the model

S′ = rS − βSI − µS
I ′ = βSI − (µ+ α)I

(6.18)

notice that, this model is analogous to the predator-prey Lotka-Volterra model of pop-
ulation dynamics.

The model has a disease free equlibrium (0, 0) and an endemic equilibrium ((µ+α)/β, (r−
µ)/β). Consider,

dI

dS
=
I(βS − µ− α)

S(r − βI)
(6.19)

by separation of variables ∫ ( r
I
− β

)
dI =

∫ (
β − µ+ α

S

)
dS (6.20)
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and integration gives
β(S + I)− r log I − (µ+ α) logS = c (6.21)

where c is a constant of integration. This implies that

V (S, I) = β(S + I)− r log I − (µ+ α) logS (6.22)

is constant over each orbit V (S, I) in the SI-plane. These orbits represent periodic solutions



Chapter 7

The Final Epidemic Size

Consider the Kermack-McKendrick model with Susceptible S, Infected I and Recovered R
individuals, and assume recovered individuals are permanently immune. Where β > 0 is
the likelihood of infection and γ > 0 is the recovery rate. Assume that the population at
t = 0 is totally susceptible, so that S(0) = N , I(0) = 1 and R(0) = 0

Ṡ = −βSI
İ = βSI − αI

Ṙ = αI

Further description of the model can be found in the book Mathematical Models in Popula-
tion Biology and Epidemiology, Section 9.2.

By adding the equations for susceptible and infected individuals we get

(S(t) + I(t))′ = −αI(t). (7.1)

Notice that S(t) + I(t) is a positive (S(t) and I(t) are positive) and decreasing function
(its derivative is negative), therefore the limit exists. Recall that the derivative of a positive
decreasing function tends to zero, therefore αI(t) → 0, since α > 0 this implies I(t) → 0.
Hence

lim
t→∞

(S(t) + I(t)) = lim
t→∞

S(t) + lim
t→∞

I(t) = S∞,

integration on both sides of (7.1)

(S(t) + I(t))′ = −αI(t)

− 1

α
(S(t) + I(t))′ = I(t)

− 1

α

∫ ∞

0

(S(t) + I(t))′dt =

∫ ∞

0

I(t)dt

∫ ∞

0

I(t)dt = − 1

α

∫ ∞

0

(S(t) + I(t))′dt = − 1

α
(S∞ + I∞︸︷︷︸

→0

−(S0 + I0︸ ︷︷ ︸
N

))

=
1

α
(N − S∞)

43
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Now dividing both sides of Ṡ by S

Ṡ

S
= −βSI∫ ∞

0

Ṡ(t)

S(t)
dt = −β

∫ ∞

0

I(t)dt

log(S)
∣∣∣∞
0

= −β
∫ ∞

0

I(t)dt

log

(
S0

S∞

)
= β

∫ ∞

0

I(t)dt

= β
1

α
(N − S∞)

=
βN

α

(
1− S∞

N

)
therefore

log

(
S0

S∞

)
= R0

(
1− S∞

N

)
. (7.2)

Equation (7.2) called the final size relation, it relates the basic reproductive number with
the final number of infected individuals, the size of the epidemic.

A model for Ebola with quarantine

Assume the total population is composed by Susceptible S, Exposed E, Infected I, Quar-
antined Q and infectious corpses D. Since the total population of model (7.3) is constant,
it is possible to reduce the system to

N = S + E + I +Q+D +R

Ṡ = −βS
(

I+εD+lQ
N

)
Ė = βS

(
I+εD+lQ

N

)
− κE

İ = (1− q)κE − γI

Q̇ = qκE − γQ

Ḋ = fdγI − νD

(7.3)

by assuming S(0) = N , E(0) = I(0) = D(0) = 0 and using the notation f̂(t) =
∫∞
0
f(s)ds

and f∞ = limt→∞ f(t); from the first two equations of system (7.3), Ṡ + Ė = −κE ≤ 0,
which implies E∞ = 0. Similarly it is possible to get I∞ = Q∞ = D∞ = 0.

By integrating model’s (7.3) first two equations, S∞ − N = κÊ which implies Ê =
N − S∞

κ1
. Similar procedure implies Î = (N − S∞)

(
1− q

γ

)
, Q̂ = (N − S∞)

(
q

γ

)
and

D̂ = (N − S∞)

(
fd(1− q)

ν

)
. By integrating model’s (7.3) first equation and using similar
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derivations than the previous example we get

log

(
N

S∞

)
=

(
1− S∞

N

)(
q
lβ

γ
+ (1− q)β

(
1

γ
+
εfd
ν

))
log

(
N

S∞

)
=

(
1− S∞

N

)
RC . (7.4)

Equation 7.4 is the typical final size relation, where RC represents the control reproduc-
tive number, the basic reproductive number in the presence of control measures. In the
presented model, equation (7.4) relates the number of infected individuals at the end of
the outbreak, to the secondary infections produced by quarantined and non-quarantined
infectious individuals, and non removed Ebola-infected corpses.

Denote by s∞ =
S∞

N
the proportion of the susceptible individuals at the end of the

epidemic, equation (7.4) yields

log(s∞) = (s∞ − 1)RC . (7.5)

Letting y = s∞ − 1 denote the proportion of population infected over the course of the
epidemic, equation (7.5) becomes

y = 1− exp[−yRc] (7.6)

which give us the final proportion of infected individuals, also known as the epidemic attack
rate.

A model for influenza

(from Simple models for containment of a pandemic)
Consider the following model for influenza infections where the population is split into

Susceptible (S(t)), Latent infected but not yet infectious (L(t)), symptomatic Infected (I(t)),
asymptomatic infectious (A(t)), and Removed (R(t)) members. Additionally assume that,
initially the total population size is K of which a small number I0 are infectious and the
remainder S0 are susceptible, with S0 + I0 = K.

Notice that the total population is not constant and it is reduced by disease-induced
deaths at a rate fαI. That is, only the fraction fαI of infected individuals recover

S′ = −Sβ(I − ϵL+ δA)

L′ = Sβ(I − ϵL+ δA)− κL

I ′ = pκL− αI

A′ = (1− p)κL− ηA

R′ = fαI + ηA

N ′ = −(1− f)αL

(7.7)

The disease-free equilibrium of the model is given by S(0) − S0 and L = I = A = R = 0.
The basic reproductive number is

R0 = S0β

(
ϵ

κ
+
p

α
+
δ(1− p)

η

)
,
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Let f̂(t) =
∫∞
0
f(s)ds. Then

∫∞
0

(S′ + L′) =
∫∞
0

−κL, from where

L̂ =
S0 − S∞

κ
.

Similarly
∫∞
0

(S′ + L′ + I ′) = −
∫∞
0

(κL(1− p) + αI) which implies

Î = (S0 − S∞)
p

α
− I0
α
,

following similar procedure, (S′ + L′ + I ′ +A′) yields

Â = (S0 − S∞)
1− p

η

finally

log

(
S0

S∞

)
= −β

(
Î − ϵL̂+ δÂ

)
= −β

[
(S0 − S∞)

p

α
− I0
α

+ ϵ

(
S0 − S∞

κ

)
+ δ

(
(S0 − S∞)

1− p

η

)]
= −β(S0 − S∞)

[
p

α
+
ϵ

κ
+ δ

(
1− p

η

)]
+ β

I0
α

= R0
S0 − S∞

S0
+ β

I0
α
.

where the final epidemic size is

log

(
S0

S∞

)
= R0

(
1− S∞

S0

)
+ β

I0
α

(7.8)

Equation (7.8) related the basic reproductive number and the final number of susceptible
individuals. Notices that, the assumption of an initial number of infectious individuals
produce the term β I0

α , that accounts for the secondary cases produced by the infected
individuals at time t = 0 (I0) during they infectious period

(
1
α

)
.

More generally, for the initial conditions

L(0) = L0, I(0) = I0, A(0) = A0

the term βI0/α in equation (7.8) takes the form

β

[
ε

κ
+
p

α
+
δ(1− p)

η

]
L0 +

βδA0

η
+
βI0
α
.

In this case, the final size relation accounts for the secondary infections of the infectious
asymptomatic and symptomatic individuals at time t = 0 (A0 and I0 respectively), and
the average infectious generated by the latent individuals at t = 0 (L0) during their la-
tency period and the weighted (with probabilities p and 1− p) average secondary infectious
generated while progressing to either symptomatic or asymptomatic state.
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Disease Transmission
pathway(s)

Intervention(s) Location Initial Condi-
tions

Data
Source(s)

Source article; Re-
sults reproduced?

Avenues for exten-
sion

Cholera Environment-
Human; Human-
Human

Disinfecting wa-
ter; Vaccination

China I0 = 28; B0 = 500
(Assumed)

NA [18], Yes

SARS-
Cov-2

Human-Human;
transmission coef-
ficient dependent
on specific humid-
ity

None New York,
USA

I0 = 1 [12] [3], Yes Heterogeneous social
mixing

Table 7.1: Summary of simulations using COPASI
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